Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A square two-dimensional polymer of cobalt citrate cubanes

Larry R. Falvello, ${ }^{\text {a* }}$ Elena Forcén-Vázquez, ${ }^{\text {a }}$ Isabel Mayoral, ${ }^{\text {b }}$ Milagros Tomás ${ }^{\text {c }}$ and Fernando Palacio ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Zaragoza - CSIC, Department of Inorganic Chemistry - ICMA, Pedro Cerbuna 12, 50009 Zaragoza, Spain, ${ }^{\text {b }}$ University of Zaragoza - CSIC, Instituto de Ciencia de Materiales de Aragón, Pedro Cerbuna 12, 50009 Zaragoza, Spain, and
${ }^{c}$ University of Zaragoza - CSIC, Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Pedro Cerbuna 12, 50009
Zaragoza, Spain
Correspondence e-mail: falvello@unizar.es

Received 21 September 2011
Accepted 20 October 2011
Online 31 October 2011
The structure of the title complex, poly[dicaesium(I) hexaaquacobalt(II) [octaaquatetra- μ-citrato-hexacobalt(II)] dodecahydrate], $\left\{\mathrm{Cs}_{2}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Co}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, at $100(1) \mathrm{K}$ is formed by layers of a square two-dimensional polymer composed of $\mathrm{Co}^{\mathrm{II}}$ citrate cubanes bridged by magnetically active six-coordinate $\mathrm{Co}^{\mathrm{II}}$ cations. The polymer has plane symmetry $p 4 m m$ in the c-axis projection. The cubanes reside on sites of crystallographic symmetry $\overline{4}$, while the bridging $\mathrm{Co}^{\mathrm{II}}$ centres lie on twofold axes. The basic polymeric unit has a charge of $4-$, balanced by two Cs^{+}and a $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (symmetry $\overline{4}$) cation, which lie in channels between the polymeric layers. Unligated water molecules, of which there are 12 per cubane, enter into an extended intralayer and layer-bridging hydrogen-bond pattern, which can be described in detail even though not all of the H atoms of the water molecules were located.

Comment

Polynuclear transition metal complexes with cube-shaped cores, generically called cubanes, have been studied for a variety of metals and in a variety of contexts. In recent years, the magnetic properties of cubane complexes of first-row transition elements have been studied, not in small part because the seminal single-molecule magnet (SMM), $\left[\mathrm{Mn}_{12^{-}}\right.$ $\left.\mathrm{O}_{12}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{16}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, has a cubane $\mathrm{Mn}_{4} \mathrm{O}_{4}$ centre (Lis, 1980; Sessoli, Gatteschi et al., 1993; Sessoli, Tsai et al., 1993). The first cobalt-based SMM (Yang et al., 2002) was a cubane, with deprotonated hydroxymethylpyridine ligands. Murrie et al. $(2003 a, b)$ described a Co-based SMM with citrate ligands. Citrate cubanes of six different transition metals were described by Hudson et al. (2006), Moubaraki et al. (2008) and Galloway et al. (2008). The citrate cubanes in these studies were discrete molecules, either with the basic $\left[\mathrm{Co}_{4}(\mathrm{citr})_{4}\right]^{8-}$
structure (where citr denotes quadruply deprotonated citric acid, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}{ }^{4-}$), or with two additional $\mathrm{Co}^{\text {II }}$ centres covalently bound at the periphery of the $\left[\mathrm{Co}_{4}(\mathrm{Citr})_{4}\right]^{8-}$ unit to give a tetraanion. We have previously reported a serrated onedimensional polymer, the structural building block of which is the $\left[\mathrm{Co}_{4}(\mathrm{citr})_{4}\right]^{8-}$ cubane, and which undergoes an unprecedented reversible crosslinking in the crystal structure to form a rhombic two-dimensional cubane polymer (Campo et al., 2008). In the resulting two-dimensional polymer, a $\mathrm{Co}^{\mathrm{II}}$ centre within the crosslinked fragment possesses an uncommon CoO_{7} coordination environment. The first three-dimensional network based on the same building block was reported recently (Galloway et al., 2010).

We have now prepared a square anionic two-dimensional polymer, octaaquatetra- μ-citrato-hexacobalt(II), the structure of which is related to that of a previously reported twodimensional polymer containing ethylene glycol, (II). The Rb^{+} and Cs^{+}salts of (II) suffer severe structural disorder but have interesting magnetic properties; these are the subject of another report (Burzurí et al., 2011). In what follows, we report the structure of the title hydrated double salt of this polymer, viz. $\left\{\mathrm{Cs}_{2}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left\{\left[\mathrm{Co}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right)_{4}\right]\left[\mu-\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}\right\}\right.$-$\left.12 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), which is the first of the square two-dimensional citrate cubane polymers to have crystallized without serious cation and hydrate disorder.

(I)

The structure of (I) is a stack of square two-dimensional polymeric layers (Fig. 1). Each layer is a regular array of cubanes located on sites of $\overline{4}$ symmetry, bridged by six-coordinate $\mathrm{Co}^{\text {II }}$ centres which sit on twofold axes. The basic unit of the polymer consists of one cubane and two bridges, viz. $\left\{\left[\mathrm{Co}_{4}(\operatorname{citr})_{4}\right]\left[\mu-\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{2}\right\}^{4-}$; the crystallographic a and b axes are the propagation vectors. In chemical terms, it is perhaps better to view the cubane as sharing bridges with each of four neighbours, with the negative charge of one unit of the polymer arising from $\left[\mathrm{Co}_{4}(\mathrm{citr})_{4}\right]^{8-}$ and one-half of each of the four $\left[\mu-\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ bridges, giving a charge of $4-$ per node of the polymer; there are two nodes per unit cell. Charge is balanced by one $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and two Cs^{+}cations per cubane; these cations are not part of the polymer. The octahedral cation is centred at $\mathrm{Co3}$, which resides on $\overline{4}$, giving two per unit cell. Cs1 resides on a set of general positions but is half-occupied, as determined both by the need for charge

Figure 1
The square polymer that forms one layer of the structure of (I).
balance and by the refinement of the displacement parameters to values in line with those of the rest of the structure. There are thus four Cs^{+}cations per cell. One-quarter of the polymer repeat unit, and its associated cations and solvent water molecules, comprise the crystallographic asymmetric unit.

The geometries of cubanes containing Co and Ni have been reviewed by Isele et al. (2007). The $\mathrm{Co}_{4} \mathrm{O}_{4}$ core in (I) (Fig. 2 and Table 1) has internal geometry comparable with that observed in previously reported structures based on this unit. The Co \cdots Co and $\mathrm{O} \cdots \mathrm{O}$ distances are well within the ranges found by Isele et al. (2007), and the acute and obtuse bond angles at Co1 and O1, respectively, have commonly observed values that can be related to the magnetic properties of the cubanes. The $\mathrm{Co}_{4} \mathrm{O}_{4}$ fragment in (I) is sufficiently distorted from a regular cubic shape that, for the purposes of describing its geometry, it is best viewed as a stellated octahedron (a distortion of the stella octangula) formed by the interleaved Co_{4} and O_{4} tetrahedra (Fig. 3). The unique $\mathrm{Cg} 1-\mathrm{Co} 1$ and $C g 1-\mathrm{O} 1$ distances are 1.9387 (5) and 1.687 (3) \AA, respectively ($C g 1$ represents the centre of the cubane, located at the unweighted average position of the eight constituent atoms). If the two tetrahedra were considered to be distorted, the Co_{4} unit would be taken as very slightly compressed, with two $\mathrm{Co}-\mathrm{Cg} 1-\mathrm{Co}$ angles greater than, and four less than, the ideal tetrahedral value. The O_{4} tetrahedron might similarly be considered as slightly elongated, although quantitatively the tetrahedral distortion is essentially negligible in both cases, with a Robinson tetrahedral angular variance $\sigma_{\theta(\operatorname{tet})}{ }^{2}$ of $5.72^{\circ 2}$ for Co_{4} and $2.51^{\circ 2}$ for O_{4} (Robinson et al., 1971). Because of the $\overline{4}$ symmetry, the quadratic elongation $\left\langle\lambda_{\text {tet }}\right\rangle$ is 1.00 . For the purposes of comparison, we have surveyed the geometries of 40 previously published $\mathrm{Co}_{4}^{\mathrm{II}} \mathrm{O}_{4}$ cubane fragments using the Cambridge Structural Database (Version 5.31; Allen, 2002). Structures that we considered to be chemically unrepre-

(a)

(b)

Figure 2
(a) The core of the cubane unit, which sits on a site of $\overline{4}$ symmetry. Only the unique citrate ligand is shown. Displacement ellipsoids are drawn at the 50% probability level. (b) The full $\left.\left[\mathrm{Co}_{4} \text { (citrate) }\right)_{4}\right]^{8-}$ 'cubane', showing the five- and six-membered chelates (in the electronic version of the paper, these are in pink and aquamarine, respectively). H atoms have been omitted for clarity. [Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $-y+1$, $x,-z+1$; (iii) $y,-x+1,-z+1$.]
sentative, such as fused cubanes, were excluded from this study. Eight of these published cubane structures displayed a slightly compressed Co_{4} tetrahedron together with a slightly elongated O_{4} unit, and three showed the opposite. None had both tetrahedra elongated. The calculated angular variances $\sigma_{\theta(\mathrm{tet})}{ }^{2}$ for the cubanes surveyed varied in the range $0.01-$ $52.9^{\circ 2}$ for Co_{4} and $0.05-63.9^{\circ 2}$ for O_{4}. In no case did $\left\langle\lambda_{\text {tet }}\right\rangle$ vary by more than 0.02 from the symmetrical value of 1.00 for either of the tetrahedra.

The four citrate ligands of the cubane in (I) are related by $\overline{4}$ symmetry. Each citrate has its ionized hydroxy O atom as one corner of the cubane. The three terminal carboxylate groups bind through one O atom each to a Co of the cube, thus forming one five- and two six-membered chelates (Figs. $2 a$ and $2 b)$. The five-membered $\mathrm{Co}^{1 i} / \mathrm{O} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{O} 2$ ring has an envelope conformation with the fold at $\mathrm{Co}^{\mathrm{ii}}$ [symmetry code: (ii) $-y+1, x,-z+1]$. Numbering from $\mathrm{Co}^{\mathrm{ii}}$ as the 1 position, this would be rendered as E_{1}. The six-membered rings $\mathrm{Col}^{1} /$

Figure 3
The distorted stellated octahedron composed of interleaved O- and Cobased tetrahedra.

O1/C1/C3/C4/O4 [symmetry code: (i) $-x+1,-y+1, z]$ and Co1/O1/C1/C5/C6/O6 have ring-puckering parameters (Cremer \& Pople, 1975) of $Q=0.780$ (3) and 0.867 (3) $\AA, \theta=$ $87.9(3)$ and $87.8(2)^{\circ}$, and $\varphi=112.0(3)$ and $343.7(2)^{\circ}$, respectively. Thus, the former has a boat conformation, ${ }^{1,4} B$ using the given atom sequence, while the latter is a slightly twisted boat based on ${ }^{1,4} B$.

An important topological feature of the $\left[\mathrm{Co}_{4}(\mathrm{citr})_{4}\right]^{8-}$ building block is its periphery, at which 12 partially charged O atoms, namely the carboxylate O atoms not involved in chelation to Co of the cube, offer as many reactive nucleophilic sites, which serve as potential linkage points for forming an ample variety of extended structures in one, two and three dimensions. A number of the citrate cubanes characterized to date have transition metals coordinated by one or more of these peripheral O atoms. The 12 O atoms form an irregular icosahedron (Fig. 4), with Cg1-to-vertex distances of 5.061 (3), 5.428 (3) and 5.535 (3) \AA for atoms O3, O5 and O7, respectively. The crystallographic $\overline{4}$ symmetry relates the vertices in groups of four. Each such group forms a distorted tetrahedron. That formed by atom O5 and its congeners is elongated along c, with a tetrahedral angular variance of $889^{\circ 2}$; this shape, when it appears as a crystal form, is called a tetragonal disphenoid. The tetrahedron containing atom O3 is compressed, with a similar variance of $828^{\circ 2}$. The O7 tetrahedron is nearly regular, with an angular variance of $6.7^{\circ 2}$. Atom O 7 and its equivalents are the linkage points for the extended structure, binding the 'satellite' atom Co 2 and its congeners, which sit on crystallographic twofold axes and bridge successive cubanes. In this way, the cubane/icosahedron and bridging atom Co 2 form an unbounded two-dimensional net parallel to the crystallographic $a b$ plane (Fig. 1). The O7 equivalents from neighbouring cubanes are trans to each other at Co2, the coordination of which is completed by four aqua ligands.

Similarities between (I) and previously reported structures with the same cubane building block end at the periphery of the cubane unit. In a previously reported structure of a onedimensional polymer of Co citrate cubanes (Campo et al., 2008), the analogous icosahedron has similar geometry to that found for (I), with elongated, compressed and regular oxygen tetrahedra having angular variances of 467,805 and $38.1^{\circ 2}$, respectively. In that structure, the cubane sits on a general

Figure 4
The icosahedron formed by the peripheral O atoms of four citrate ligands. [Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $-y+1, x,-z+1$; (iii) $y,-x+1$, $-z+1$.]
position and five of its peripheral O atoms bind Co, namely those that are analogous to sites $\mathrm{O} 3, \mathrm{O} 7, \mathrm{O} 5^{\mathrm{iii}}, \mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{O} 5^{\mathrm{i}}$ in Fig. 4. The extended structure in that case does not have the symmetry shown by (I) and the chemical unit formed is a serrated one-dimensional polymer of cubanes. That structure undergoes a chemical reaction in the solid state to form a crosslinked two-dimensional polymer whose icosahedra of peripheral O atoms bind Co at the sites analogous to $\mathrm{O} 3, \mathrm{O} 7$, $\mathrm{O} 5^{\mathrm{iii}}, \mathrm{O} 3^{\mathrm{ii}}$ and $\mathrm{O} 7^{\mathrm{i}}$, having lost the link to Co at the site analogous to O^{i}.

In (I), the gaps in the polymer mesh of one layer are covered by the cubanes of the two neighbouring layers. The $\ldots A B A B \ldots$ stacking of the layers is propagated by $\frac{1}{2}[111]$, but alternate layers are actually related by $n[110]$ and are thus mirror images of each other.

The stacking of the two-dimensional polymeric layers leaves channels in the structure parallel to the a and b axes. These are occupied by the Cs^{+}cations (two per polymer repeat unit) along with $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, located on $\overline{4}$, and the solvent water molecules.

The hydrogen bonding in (I), although extensive, is not a structure-determining factor; rather, hydrogen bonds are formed within the channels left by the stacking of the anionic polymers, and also between water molecules within the channels and O atoms of the citrate and aqua ligands attached to the Co atoms of the polymer. The seven independent water fragments present (three of them unligated), along with atoms Co 2 and Co 3 (to which four of the unique water molecules are bound) and their congeners, form a cyclic structure mediated by coordination and hydrogen bonds and which girds the periphery of the icosahedral $\left[\mathrm{Co}_{4}(\text { citr })_{4}\right]^{8-}$ unit. The water molecules donate hydrogen bonds to the inner carboxylate O atoms, i.e. those that are bound to cubane Co, as well as to the peripheral carboxylate O atoms (Table 2).

This extensive ordered hydrogen-bonding arrangement is not necessary, however, for the stability of the structure. In other systems based on a closely related two-dimensional polymer but crystallized with other cations ($\mathrm{Rb}^{+}, \mathrm{Cs}^{+}$or K^{+}),
we have observed an isomorphous crystal structure: the twodimensional layer is stacked in the same arrangement as in (I), but the interlayer space is very different in all cases. Compound (I) is the first case we have observed in which there is no disorder in the non-H atoms of the interstitial residues. In the Rb^{+}and Cs^{+}salts (Burzurí et al., 2011), which are stable in the crystalline state, the cations are disordered over two and three independent sites, respectively, and the interlayer water molecules are severely disordered in the channels. In those structures, the channels account for 39% of the volume of the unit cell, while in (I) 42% of the volume is in the channels. We can speculate that the presence of a larger cation, i.e. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$, with its hydrogen-bonding capability, obviates the disordering of the channel contents in (I).

In conclusion, the structure of (I) presents a variety of geometric forms, from the central cubane formed by interleaved tetrahedra to the icosahedron composed of 12 O atoms at the periphery of the basic structural building block, to which are ligated four bridging octahedral $\mathrm{Co}^{\mathrm{II}}$ centres to form a square two-dimensional polymer. These anionic layers are stacked along the c axis, with independent octahedral $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Cs}^{+}$and $\mathrm{H}_{2} \mathrm{O}$ in the interlayer spaces. The fact that the interlayer space is ordered in (I) and disordered in two previously reported structures of the same type indicates that the hydrogen-bonding pattern in (I) is not a structuredirecting feature.

Experimental

All reagents were commercially available and were used as received. The title compound, (I), was prepared by adding an aqueous solution of $\mathrm{CsOH}(1.2 \mathrm{M})$ to an aqueous solution of $\left\{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{Co}_{2}{ }^{-}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (Zhou et al., 2005) ($0.81 \mathrm{~g}, 1.00 \mathrm{mmol}$) until the pH reached $7-8$. The resulting mixture was stirred for 30 min and filtered. The addition of $3,3^{\prime}$-sulfanediyldipropanol (98%) to the solution produced small quantities of pink crystals of (I) with cubic morphology after several months at room temperature.

Crystal data

$\mathrm{Cs}_{2}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{Co}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right)_{4}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1899.11$
Tetragonal, $P \overline{4} 2_{1} c$
$a=12.5738$ (1) \AA
$c=19.5895(3) \AA$

Data collection

Oxford Xcalibur Sapphire3 diffractometer
Absorption correction: multi-scan [using spherical harmonics, implemented in SCALE3
$A B S P A C K$ scaling algorithm;
$V=3097.11(6) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=3.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.16 \times 0.14 \times 0.10 \mathrm{~mm}$

Oxford Diffraction, 2010]
$T_{\text {min }}=0.790, T_{\text {max }}=1.000$ 14807 measured reflections 3677 independent reflections 3128 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.038$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.094$
$S=1.02$
3677 reflections
202 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.037(3)$	$\mathrm{O} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$2.719(5)$
$\mathrm{Co} 1-\mathrm{O} 1$	${ }^{\text {iii }}$	$2.087(3)$	$\mathrm{O} 1 \cdots \mathrm{O} 1^{\text {iii }}$

Symmetry codes: (i) $-x+1,-y+1, z$; (ii) $-y+1, x,-z+1$; (iii) $y,-x+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}$	0.95	1.82	2.628 (5)	141
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} W$	0.96	1.91	2.829 (5)	160
$\mathrm{O} 2 W \cdots \mathrm{O} 5^{\text {iv }}$			2.604 (5)	
$\mathrm{O} 2 W \cdots \mathrm{O} 7$			2.782 (5)	
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 3^{\text {iii }}$	0.83	1.84	2.662 (4)	168
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} W$	0.84	1.98	2.778 (4)	159
$\mathrm{O} 4 W-\mathrm{H} 4 W A \cdots \mathrm{O} W^{\text {iii }}$	1.00	1.75	2.736 (5)	167
$\mathrm{O} 5 W-\mathrm{H} 5 W A \cdots \mathrm{O} 6 W^{\text {vi }}$	0.91	1.99	2.859 (5)	161
$\mathrm{O} 5 W-\mathrm{H} 5 W B \cdots \mathrm{O} 2^{\text {v }}$	0.93	1.99	2.905 (5)	167
$\mathrm{O} 6 W-\mathrm{H} 6 W A \cdots \mathrm{O} W^{\text {iv }}$	0.85	1.94	2.785 (7)	180
O6W ...O2W			2.882 (5)	
$\mathrm{O} 7 W-\mathrm{H} 7 W A \cdots \mathrm{O} 3$	0.98	1.83	2.708 (5)	148
$\mathrm{O} 7 W-\mathrm{H} 7 W B \cdots \mathrm{O}^{\text {vii }}$	0.91	1.90	2.749 (6)	153

The Cs1 site was refined with an occupancy of 0.5 , which gives charge balance for the structure as a whole and results in displacement parameters of Cs1 in line with those of the rest of the structure. Citrate methylene H atoms were added at calculated positions $(\mathrm{C}-\mathrm{H}=0.99 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. For the seven water sites present in the asymmetric unit, of which four are bound to Co , a total of ten H atoms were located in difference maps and included as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. There was no attempt to force or otherwise idealize the $\mathrm{O}-\mathrm{H}$ distances. Atom $\mathrm{O} 4 W$ is located on a twofold axis and its unique H atom was located. Three H atoms were omitted, namely the two on O 2 W and one on O6W. The two H atoms attached to O 6 W were initially placed at positions calculated for donor H atoms in the two interactions in which O6W must be donor. Specifically, O6W must be the donor in hydrogen bonds to $\mathrm{O} 2 W[D \cdots A=2.882(5) \AA]$ and $\mathrm{O} 7 W^{\text {iv }}[D \cdots A=$ 2.785 (7) \AA; symmetry code: (iv) $\left.x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{3}{2}\right]$, because O2W and O7W have two clear hydrogen-bonding contacts each to unprotonated O atoms, and so $\mathrm{O} 2 W$ and $\mathrm{O} 7 W^{\text {iv }}$ must be the acceptors in their interactions with O6W. Nevertheless, the position of the H atom involved in a putative hydrogen bond from O 6 W to O 2 W could not be verified in an omit map, and so this H atom was removed from the model. One H atom attached to $\mathrm{O} 2 W$, and which is likely the donor in an interaction with O7 [$D \cdots A=2.782$ (5) \AA], was neither observed in a difference map nor placed at a calculated position,
because there exists the possibility of minor disorder components in which the second H atom on $\mathrm{O} 2 W$ donates to $\mathrm{O} 1 W[2.991$ (5) \AA] or to O2 $W^{\mathrm{v}}[D \cdots A=2.919$ (8) \AA; symmetry code: (v) $-x+1,-y, z]$. Following refinement, two difference peaks with densities of 1.58 and 1.15 e \AA^{-3} were found at 0.79 and $1.06 \AA$, respectively, from Cs1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus \& Chapuis, (2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by the Ministry of Science and Innovation (Spain) under grant Nos. MAT2007-61621, MAT2008-04350 and CONSOLIDER-INGENIO in Molecular Nanoscience (reference CSD 2007-00010), and by the Diputación General de Aragón (Spain). EFV thanks the Ministry of Education (Spain) for a pre-doctoral scholarship under the programme 'Becas y Contratos FPU' (reference AP2009-4211).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GZ3201). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.

Burzurí, E., Campo, J., Falvello, L. R., Forcén-Vázquez, E., Luis, F., Mayoral, I., Palacio, F., Sáenz de Pipaón, C. \& Tomás, M. (2011). Chem. Eur. J. 17, 2818 2822.

Campo, J., Falvello, L. R., Mayoral, I., Palacio, F., Soler, T. \& Tomás, M. (2008). J. Am. Chem. Soc. 130, 2932-2933.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Galloway, K. W., Schmidtmann, M., Sanchez-Benitez, J., Kamenev, K. V., Wernsdorfer, W. \& Murrie, M. (2010). Dalton Trans. 39, 4727-4729.
Galloway, K. W., Whyte, A. M., Wernsdorfer, W., Sanchez-Benitez, J., Kamenev, K. V., Parkin, A., Peacock, R. D. \& Murrie, M. (2008). Inorg. Chem. 47, 7438-7442.
Hudson, T. A., Berry, K. J., Moubaraki, B., Murray, K. S. \& Robson, R. (2006). Inorg. Chem. 45, 3549-3556.
Isele, K., Gigon, F., Williams, A. F., Bernardinelli, G., Franz, P. \& Descurtins, S. (2007). Dalton Trans. pp. 332-341.

Lis, T. (1980). Acta Cryst. B36, 2042-2046.
Moubaraki, B., Murray, K. S., Hudson, T. A. \& Robson, R. (2008). Eur. J. Inorg. Chem. pp. 4525-4529.
Murrie, M., Teat, S. J., Stoeckli-Evans, H. \& Güdel, H. U. (2003a). Angew. Chem. 115, 4801-4804.
Murrie, M., Teat, S. J., Stoeckli-Evans, H. \& Güdel, H. U. (2003b). Angew. Chem. Int. Ed. 42, 4653-4656.
Oxford Diffraction (2010). CrysAlis PRO. Version 1.171.33.55 (release 05-012010 CrysAlis171.NET). Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
Palatinus, L. \& Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Sessoli, R., Gatteschi, D., Caneschi, A. \& Novak, M. A. (1993). Nature (London), 365, 141-143.
Sessoli, R., Tsai, H. L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. \& Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804-1816.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yang, E.-C., Hendrickson, D. N., Wernsdorfer, W., Nakano, M., Zakharov, L. N., Sommer, R. D., Rheingold, A. L., Ledezma-Gairaud, M. \& Christou, G. (2002). J. Appl. Phys. 91, 7382-7384.

Zhou, Z. H., Deng, Y. F. \& Wan, H. L. (2005). Cryst. Growth Des. 5, 11091117.

